██████╗ ███████╗ █████╗
██╔══██╗██╔════╝██╔══██╗
██████╔╝███████╗███████║
██╔══██╗╚════██║██╔══██║
██║ ██║███████║██║ ██║
╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝
RSA (Rivest–Shamir–Adleman)) is one of the commonly used asymmetric cryptography algorithm .
The RSA algorithm involves four steps: key generation, key distribution, encryption, and decryption.
Before establishing the proof of correctness, there are two theorems that are essential in undertstanding it:
Fermat's little theorem states that if p is a prime number, then for any integer a, the number a^p − a is an integer multiple of p.
In number theory, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
If the remainders are same then:
Theorem: If, x = y (mod p) & x = y (mod q) with p and q coprime. Then x = y (mod pq).
Proof:
x = y (mod p)
x = y + kp
x - y = kp
p divides (x - y)
Similarly,
x = y (mod q)
x = y + kq
x - y = kq
q divides (x - y)
=> kp = kq = x - y
kq = x - y
Muliply with p on both sides,
kpq = (x - y)p
Take mod pq,
0 = (x - y)p mod pq
=> 0 = (x - y) mod pq
=> x = y mod pq
The same can be arrived from kp = x - y .
We need to prove that,
--------------- (1)
where m can be any integer, p and q are distinct prime numbers and e and d are positive integers satisfying,
--------------- (2).
According to the Chinese remainder theorem (CRT) equation (1) is valid if,
--------------- (3)
and
--------------- (4)
are valid.
From equation (2)
--------------- (5)
where u and v are some integers, because ed - 1
is a multiple of the lcm of
(p-1, q-1)
, and
lcm of (p-1, q-1)
will be u(p - 1) = v(q - 1)
.
Equation (3) can be written as,
--------------- (6),
which in turn can be written as
--------------- (7),
which can be further reduced using the Fermats Little theorem to,
--------------- (8),
which is valid.
Similarly equation (4) can be written as,
--------------- (9),
which in turn can be written as
--------------- (10),
which can be further reduced using the Fermats Little theorem to,
--------------- (11),
which is also valid.
Hence as both equation (3) and (4) are valid, according to CRT equation 1 is valid. Hence correctness of RSA is proved.
The textbook RSA decryption algorithm is as follows:
--------------- (12),
where c is the cipher text, d is the private/decryption key, m is the original message. But as c, d, and pq will be very large the decryption process will take long time to execute.
To optimize the calculation of equation 12, by using the CRT we can reduce it to,
--------------- (13)
which can be further reduced to
--------------- (14)
by using the Fermats Little theorem.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
/** * @file rsa.cc * @brief Soruce file for the RSA library * * This file contains the implementation of the RSA library * * @author Tony Josi https://github.com/tony-josi/rsa * @copyright Copyright (C) 2021 Tony Josi * @bug No known bugs. */ #include <stdexcept> #include <stdint.h> #include "big_int.hpp" class rsa { private: size_t bit_size; bi::big_int p; bi::big_int q; bi::big_int p_minus_1; bi::big_int q_minus_1; bi::big_int pq; bi::big_int p_minus_1q_minus_1; bi::big_int e; bi::big_int d; bi::big_int smaller_prime; bi::big_int reduced_d; public: /* bit_size ==> RSA bitsize miller_rabin_rounds ==> Maximum number of Rabin Miller iterations to be done on the candidate random number to check its a prime max_number_of_threads_for_miller_rabin ==> Maximum number of threads to use while finding random prime numbers. -1 means use maximum possible number of threads [std::thread::hardware_concurrency()]. */ rsa(size_t bit_size, int miller_rabin_rounds = 20, int max_number_of_threads_for_miller_rabin = -1); int rsa_encrypt(bi::big_int &plain, bi::big_int &cipher); int rsa_decrypt_textbook_method(bi::big_int &cipher, bi::big_int &decipher); int rsa_decrypt(bi::big_int &cipher, bi::big_int &decipher); bi::big_int get_public_key(); bi::big_int get_private_key(); bi::big_int get_modulus(); }; constexpr uint32_t DEFAULT_32_BIT_PUBLIC_KEY = 0x10001; rsa::rsa(size_t bit_size_arg, int miller_rabin_rounds, int max_number_of_threads_for_miller_rabin) { int ret_val = 0; if (bit_size_arg < 64 || bit_size_arg % 2 != 0) { throw std::invalid_argument("Invalid bit size for RSA, must be greater than or equal to 64 and even"); } bit_size_arg /= 2; bit_size = bit_size_arg; /* Create 2 random primes with RSA bitsize bits. */ int pq_comp_res; do { ret_val += p.big_int_get_random_unsigned_prime_rabin_miller_threaded(static_cast<int>(bit_size_arg), \ miller_rabin_rounds, max_number_of_threads_for_miller_rabin); ret_val += q.big_int_get_random_unsigned_prime_rabin_miller_threaded(static_cast<int>(bit_size_arg), \ miller_rabin_rounds, max_number_of_threads_for_miller_rabin); } while((pq_comp_res = p.big_int_unsigned_compare(q)) == 0); /* Continue until we have distinct primes p, q. */ ret_val += p.big_int_multiply(q, pq); bi::big_int bi_1; ret_val += bi_1.big_int_from_base_type(1, false); /* Calculate p-1 and q-1 */ ret_val += p.big_int_unsigned_sub(bi_1, p_minus_1); ret_val += q.big_int_unsigned_sub(bi_1, q_minus_1); ret_val += p_minus_1.big_int_multiply(q_minus_1, p_minus_1q_minus_1); /* Initialise public key, [uses DEFAULT_32_BIT_PUBLIC_KEY as the default public key, hence the minimum 64 bits key size restrictions.] */ ret_val += e.big_int_from_base_type(DEFAULT_32_BIT_PUBLIC_KEY, false); if (e.big_int_unsigned_compare(p_minus_1q_minus_1) >= 0) { throw std::invalid_argument("Error initializing RSA"); } /* Calculate the private key as the modular inverse of the public key in (p-1)(q-1). */ ret_val += e.big_int_modular_inverse_extended_euclidean_algorithm(p_minus_1q_minus_1, d); /* Store the smaller prime among p & q and private key modulo smaller prime for faster/efficient decryption. [Fermat's Little theorem]. */ if (pq_comp_res > 0) { smaller_prime = q; ret_val += d.big_int_modulus(q_minus_1, reduced_d); } else { smaller_prime = p; ret_val += d.big_int_modulus(p_minus_1, reduced_d); } /* Throw if error. */ if (ret_val != 0) { throw std::invalid_argument("Error initializing RSA"); } } bi::big_int rsa::get_private_key() { return d; } bi::big_int rsa::get_public_key() { return e; } bi::big_int rsa::get_modulus() { return pq; } int rsa::rsa_encrypt(bi::big_int &plain, bi::big_int &cipher) { if (plain.big_int_get_num_of_bits() > bit_size) { throw std::invalid_argument("Plain text too long"); } /* c = m ^ e mod pq = m ^ e mod p = m ^ e mod q [Chinese remainder theorem]. refer ==> https://tony-josi.github.io/Articles/RSA_Proof/rsa_proof.html */ return plain.big_int_fast_modular_exponentiation(e, smaller_prime, cipher); } int rsa::rsa_decrypt_textbook_method(bi::big_int &cipher, bi::big_int &decipher) { if (cipher.big_int_get_num_of_bits() > bit_size) { throw std::invalid_argument("Cipher text too long"); } /* m = c ^ d mod pq = c ^ d mod p = c ^ d mod q [Chinese remainder theorem]. refer ==> https://tony-josi.github.io/Articles/RSA_Proof/rsa_proof.html */ return cipher.big_int_fast_modular_exponentiation(d, smaller_prime, decipher); } int rsa::rsa_decrypt(bi::big_int &cipher, bi::big_int &decipher) { if (cipher.big_int_get_num_of_bits() > bit_size) { throw std::invalid_argument("Cipher text too long"); } /* Refer ==> RSA optimizing the decryption algorithm from https://tony-josi.github.io/Articles/RSA_Proof/rsa_proof.html */ int ret_val = 0; bi::big_int reduced_cipher_text; ret_val += cipher.big_int_modulus(smaller_prime, reduced_cipher_text); ret_val += reduced_cipher_text.big_int_fast_modular_exponentiation(reduced_d, smaller_prime, decipher); return ret_val; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 |
PUB: 10001 PRIV: 399FE73E6ABDBF9CBCFD1FA5D30019B3F979DC607ED7104E9222B9947DB168CE48B46C395B7E3F4EC7C39206D1D7010F952C48723EA59EAC79364AF34708068632DE4D7B3C30621EAF58A655928BE6AD697D7E1ED2422B5927F5AC6FEB9C54AE02E800530096DE856835493D71A8F09456D91A76279BC3476A276871902C2BB5 MOD: 568B6823BA364D9B222F0ABF4D20A3D1A02F9FC145199142A11D9B622F48B81D6F85A0E9C515E194F9F41FF3A1E9262A61AD837DA3A5C19A84EAF21F7DE009496EC9137A638C6F2A871FA630051995FA7B42DF8CE0B4D72D54BC95DD8AEB88E24FC8B74E2ABB9E2082AE37C1CC3EE3023CB385C1513C9B84DC1CCCC9266E03F9 PLAIN: CAFEBABE CIPHER: 7900F505EF6217AAFF1ACB7562BCCA9FB93414C196F9DB0B338F26400F1A014F232BD3531C9D278D382E70D2B6ADB5FD07E23B12246A7087EFF848ECEC829B9B DECIPHER: CAFEBABE DECIPHER TB: CAFEBABE |
Source code HTML generated using hilite.me